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1. Abstract 7 

Accommodating predicted population growth and urbanization within the UN Climate Goals poses a 8 
significant challenge for disciplines that engage with the built environment. High performing buildings of 9 
the future should offer spatial quality for their users while utilizing resources as efficiently as possible for 10 
both construction and operation. In this review, we survey the value proposition of automatic floorplan 11 
layout generation methods and their opportunities for design guidance, feedback, and optimization in 12 
the creation of new buildings, in addition to applications for inventory characterization to survey 13 
existing housing stock and guide building policy and code. We divide existing methods into three 14 
categories: bottom-up methods, top-down methods, and referential methods. We explore advantages 15 
and challenges for each approach and propose a hybrid method for future building layout automation 16 
that utilizes a new set of metrics to create sustainable buildings of the future.  17 
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2. Introduction 21 

The International Energy Agency (IEA) estimates that the global built floor area will increase by some 22 
235 billion m2 until 2050, to accommodate a growing population and rising standards of living [1]. The 23 
environmental, economic, and ethical implications of this prediction are momentous. At a time when 24 
humanity has around 580 Gt CO2e left to burn to keep global warming below 1.5°C, the “plan” to double 25 
the size of the building sector in a single generation seems risky. While one may expect significant 26 
efficiency gains in terms of area-weighted resource use and construction costs vis-à-vis today’s building 27 
practices, the crucial question is whether humanity really needs that indoor space?  28 

The construction sector – and especially the high-performance design community – have long embraced 29 
computer-based performance analysis methods for embodied and operational energy use associated 30 
with construction materials and building use. However, space efficiency evaluations are far less 31 
common. Usually, there is a design brief provided to the architect that stipulates a certain amount of 32 
program including a set percentage for circulation and space conditioning equipment. The sum of these 33 
space uses adds up to an overall building volume that can then be explored via massing studies. The 34 
spatial relationship between a massing volume or a floorplan and the distribution of program is, of 35 
course, quite complex, ranging from desired adjacencies to minimal width or depth requirements. In 36 
terms of future reuse opportunity, the design team would ideally also like to know how amenable a 37 
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given floorplan is to adaptive reuse or which walls could be load bearing while supporting good 38 
daylighting etc. 39 

This paper reviews previous automated floorplan layout generation methods and assesses their actual 40 
and potential application for architectural design, urban planning, and real-estate development. A 41 
floorplan layout creation method creates an architectural layout from a series of geometric constraints 42 
and/or programmatic requirements. It should already be noted here that thus far only experimental 43 
artistic architectural design practices [2,3] and the real-estate sector (Table 1) have been eager to 44 
embrace novel generative and artificial intelligence-based layout automation tools, whereas the 45 
architectural profession at large has expressed some reservation against algorithms whose perceived 46 
ultimate goal might be to replace the profession. The purpose of this paper is to clarify the capabilities 47 
and limitations of existing methods and envision how they could contribute towards the design of more 48 
elegant, effective, and flexible spaces on a scale ranging from individual floors and buildings to whole 49 
cities. 50 

A number of reviews on computational layout automation have been conducted that included industrial 51 
facility layouts [4], focused on specific computational methods, such as evolutionary algorithms [5,6] or 52 
agent based methods [7]. Furthermore methods have been surveyed with a focus on methods 53 
optimizing for energy usage [8,9]. In this manuscript, we initially review which professions have thus far 54 
used automated space layout methods and for what purpose. We then introduce a new approach that 55 
productively combines these methods with a specific focus on early-stage architectural massing studies 56 
and existing building stock characterization. 57 

3. Value proposition 58 

The first automated floorplan generation methods were introduced close to half a century ago. The 59 
underlying motivation has changed over time and still varies significantly between different projects and 60 
tools today. This section provides an account of significant historic precedents followed by 61 
contemporary use cases, in which the authors see exciting, new applications of the underlying 62 
technologies.  63 

Past and current approaches 64 

Automatic space layout creation methods were introduced as artistic speculations on the future role of 65 
computers and artificial intelligence in architecture in the 1970s. Yona Friedman proposed the Flatwriter 66 
[10] to generate apartment layouts that would accommodate usage preferences of all neighbors in 67 
cooperative housing projects. Automating the layout creation process was seen as an enabler for 68 
participatory design. Cedric Price proposed the “Generator”: A reconfigurable voxel based spatial unit 69 
that could be reconfigured by visitors into different layouts [11]. Both pre-computational proposals 70 
envisioned floorplans designed by a modular kit of parts in a bottom-up process.  71 

During the late 1970s, George Stiny started working on the analysis and reproduction of building layouts 72 
via so-called parametric shape grammars [12]. By understand the design and spatial qualities of existing 73 
buildings such as Palladian villas  [13] or Frank Lloyd Wright’s prairie houses [14], the underlying 74 
patterns could be deployed to recreate buildings of the same type. Similarly, Christopher Alexander 75 
represented spatial relationships in traditional architectural floorplans via relational graphs and tree 76 
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structures [15]. These abstractions were essential first steps necessary for automating the generation of 77 
floorplans and continue to play a foundational role in contemporary computational approaches.  78 

Grammar based design methods have been successfully implemented into computational workflows to 79 
procedurally compute building volumes with detailed facades. Notably Esri’s City Engine [16] which 80 
integrates the CGA++ shape grammar language [17] that enables the generation of differentiated 81 
building envelopes for visualization purposes of urban design proposals.      82 

As of today, automated building-level layout tools have not made much headway into mainstream 83 
architectural practice where, their use is mainly reserved for speculative design exercises or specific 84 
niche applications such as office furnishing and electric lighting layouts in interior design [18] or complex 85 
programming exercised for hospitals, airports or large scale residential and commercial developments 86 
[19–21]. For such applications, automatically generated design options can augment or replace 87 
conventional manual design processes by offering not a single optimal solution but a family of directions 88 
for further design exploration [22].  89 

In contrast to architectural design, the real estate sector has enthusiastically embraced and supported 90 
the creation of a plethora of floorplan and building automation software and practice. Several 91 
companies of varying size now focus on the creation of automatic layout tools to assist property 92 
developers and decision makers. They promise to maximize the potential buildable area and perform 93 
automatic analysis of a site, creating semi-automatic feasibility studies that can inform investment 94 
opportunities for land acquisition and maximize rentable area. Whether geared towards the real estate 95 
industry or conceived as in-house software tools in architecture and engineering firms, most current 96 
approaches tackle layout automation on the scale of a single building massing. They include different 97 
apartment (or in the case of hospitality, hotel room) mixes and simplified core placements with single or 98 
double loaded corridors. Table 1 provides a snapshot of prominent automated space layout creation 99 
method at the time of writing. 100 

Table 1: Representative sample of contemporary automatic space layout creation methods in practice. 101 

Typology Scale Output Client Use case Company 
Product 

Name Citation 

Residential, 
Commercial, 
Mixed use 

(L) Multiple 
buildings 

Massing, architectural 
program 

Real estate, 
architects 

Increase speed of 
design 

Software Archistar [23] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing, floorplans Real estate Feasibility studies, 
real estate 

Software Testfit [24] 
 

Residential (L) Multiple 
buildings 

Massing, architectural 
Program 

Architects, 
Real estate 

N/A Software Matterlab [25] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing, architectural 
Program 

Architects, 
Real estate 

Feasibility studies, 
design exploration 

Software Spacemaker [26] 

Residential (L) Multiple 
buildings 

Massing, architectural 
Program 

Construction 
company 

Modular construction Software KREO [27] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing Architects, 
Real estate 

Sustainable design, 
feasibility studies 

Software Digital Blue 
Foam 

[28] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing, architectural 
Program 

Architects Feasibility studies, 
design exploration 

Software Delve [29] 
 

Res (S) Single 
floor 

Architectural layout Architects Feasibility Architecture finch 3d [30] 
 

Educational (M) Single 
building 

Architectural layout from 
predefined building 
blocks 

Community Participatory design Government Seismic School 
App 

[31] 
 

Residential (L) Multiple 
buildings 

Massing, architectural 
Program 

Community, 
architects, 
real estate 

Participatory design, 
feasibility 

Government Prism App [32] 
 

Undefined (S-L) Building massing, 
lighting layout, window 
placement  

Architects, 
engineers 

Framework for 
automated design 

Software Project Refinery [33] 
 

Residential (L) Multiple 
buildings 

Massing, architectural 
program 

Architects, 
government 

Design exploration, 
community 
engagement 

Software Typenhaus+ [34] 
 

Undefined (L) Multiple 
buildings 

Massing In-House 
design tool 

Design exploration Architecture Scout [35] 
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Undefined (L) Multiple 
buildings 

Massing, architectural 
program 

In-House 
design tool 

Design exploration Engineering Site Solve [36] 

Res, Com, 
Mixed 

(M) Single 
building 

Massing, architectural 
program 

Municipalities, 
real estate, 
architects 

Design exploration, 
feasibility 

Software Omrt ostate 
 

[37] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing Homeowners, 
real estate 

Land acquisition, real 
estate evaluation 

Software CityBldr 
 

[38] 

Hotel (M) Single 
building 

Massing, architectural 
program 

Hospitality 
companies 

Feasibility, early-stage 
planning 

Software Parafin [39] 

Res, Com, 
Mixed 

(L) Multiple 
buildings 

Massing, architectural 
program 

In-house Design exploration, 
feasibility 

Architecture Gensler Blox [40] 
 

Residential (S) Single 
Apartment 

Furnished architectural 
layout 

Architects Increase speed of 
design 

Software PlanFinder [41] 

 102 

Future applications 103 

We note that there is currently no technical implementation of automatic space layout creation 104 
available that can fully replace a skilled human designer. More importantly, given the crucial role that 105 
architecture can play to provide more socially equitable and environmentally responsible spaces, we do 106 
not believe that the end goal of automated floor-plan generator methods should be to replace the 107 
human architect. Instead, we have identified three broad use cases that go beyond efficiency 108 
maximization and rather focus on improving the quality of the design process and resulting architecture. 109 
These use cases are design feedback, design guidance/optimization, and inventory characterization. 110 

 111 

3.1. Use Case 1 - Design Feedback  112 

Building massing decisions can have a significant and hard to predict impact on resulting interior space 113 
layouts, which in turn have cascading effects on building occupancy, structural efficiency, and even 114 
operational energy use. Fast simulations and generative design tools can help designers develop their 115 
own intuition for such relationships. In structural engineering education for architects and engineers, 116 
real-time simulations have become a useful tool to visualize problems and help designers build a 117 
geometric intuition to create more efficient structures [42,43]. Real-time visualization of the impact of 118 
design decisions can be useful to convey information to decision makers. When combined with novel 119 
interfaces, non-expert stakeholders or the local community can be engaged and learn about the design 120 
process more easily [44].  121 

Plugging in to existing design workflows, automatic layout generation could help to visualize how 122 
changes in a building’s massing relates to constraints for circulation, program, or structural 123 
requirements, as illustrated in Figure 1. Showcasing how building cores must be dimensioned for a given 124 
floorplate and the influence of floor-plan typologies on the energy usage of a building [45] can give 125 
architects a more intuitive understanding in early design processes. Programmatic changes based on 126 
different lighting and thermal requirements can have a direct influence on a building’s energy budget:  127 
Interactive approaches can give a more intuitive understanding of these requirements, leading to 128 
solutions that can negotiate between requirements of different stakeholders. Furthermore, materially 129 
integrated design processes can visualize how different construction methods and material systems 130 
have different constraints during the design process. A direct comparison and calculation of embodied 131 
carbon and achievable spans could help users find new more sustainable design solutions [46].  132 
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 133 
Figure 1: Pedagogical use of generative design tools to help build design intuition for circulation (left), program and energy 134 

(middle) and material-based constraints (right). 135 

3.2. Use Case 2 - Design Guidance or Optimization 136 

Generative layout tools can be used to augment different stages of existing digital design workflows. 137 
Parametric design spaces can be explored for optimization within predefined constraints [47], and 138 
grammar- and aggregation-based automated methods have been used to create new types of modular 139 
structures [48]. As speculative and early-stage design tools, automated approaches offer the 140 
opportunity to test ideas at scale and generate design options iteratively that would be difficult to 141 
achieve with manual workflows (Figure 2).  142 

With highly specific programmatic requirements in specialty typologies, such as hospitals or airports, 143 
automated layout methods can help designers to optimize floorplans with adjacency, pathfinding, 144 
energetic or daylight heuristics [8,19], or structural system efficiency [49]. Multi-objective optimization 145 
and objective functions that are highly specific to the specified architectural problem can be used to 146 
negotiate between different (competing or diverging) goals. A series of experimental hybrid semi-147 
automated methods have been deployed in such design processes where physics-based simulations can 148 
be steered by a user to inform programmatic distribution of layouts [50]. 149 

Referential automated methods can be deployed in later stages of building design. Leveraging 150 
architectural catalogues and previously generated designs, methods of automation can reuse and adapt 151 
established design solutions for new problems. This has been successfully demonstrated on a material 152 
scale where algorithmic workflows can identify closest fit solutions in existing material catalogues [51] 153 
as well as for adaption of existing floorplan layouts into new building massing [52].  154 

  155 
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 156 
Figure 2: Use of automatic methods as design tool for automatically populating building massing (left), optimizing existing 157 

building layouts (middle) and the creation of novel design options (right) 158 

3.3. Use Case 3 – Inventory Characterization  159 

Automatic layout design tools not only offer opportunities for new buildings, but could be used to 160 
characterize and redevelop existing urban environments. Making use of widely available geometric 161 
massing GIS datasets, existing building stock could be modeled on a building level when combined with 162 
automatic floorplan layouts. This could lead better and more detailed understanding of existing housing 163 
stock and its embodied material quantities [46].  164 

A better and more visual understanding of future developments enabled by current zoning could lead to 165 
more informed decisions for housing policies and building laws and allow for non-experts from the 166 
broader public to engage with planning processes. A clear understanding of desired goals could lead to 167 
outcome or performance based zoning that can take metrics such as urban comfort, mobility, and 168 
daylighting in to account [53]. Identifying possibilities of reuse or densification on a large scale could 169 
empower lawmakers to better guide their cities development as depicted in Figure 3.  170 

 171 

 172 
Figure 3: Opportunities of automatic space layout tools to be utilized for the survey of existing housing stock (left), to explore 173 

opportunities of densification (middle) and to identify implications of changes in zoning and building codes (right). 174 

 175 
4. Methods 176 

Following a description of possible use cases, this section reviews the computational methods 177 
underlying previously suggested approaches for automatic space layout generators. With origins in 178 
various engineering and computer science disciplines, many of the methods have been developed for 179 
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different use cases and have been adapted for building design workflows. This opens the field to new 180 
ideas and approaches for spatial design, but can also lead to a mismatch, where methodologies have 181 
inherent shortcomings that are difficult to adapt to the requirements of the architecture and planning 182 
disciplines. We divide existing approaches into three categories: bottom-up methods, top-down methods 183 
and referential methods. We outline the strengths and weaknesses of these categories vis-à-vis 184 
previously mentioned use cases. 185 

4.1. Indexing and Search 186 

Four main databases were used to retrieve research articles for this review paper: Web of Science [54], 187 
Google Scholar [55], Journals indexed in the Architecture and Civil Engineering disciplines from Scopus 188 
[56], as well as CumInCAD [57], a database of conferences and journals in the architectural 189 
computational design disciplines. In a second step we analyzed the references mentioned in the review 190 
and methods articles as well as tracking novel work that cited the relevant articles. A fully automated 191 
search and bibliometric analysis was not possible as floorplan and layout automation keywords are used 192 
in different disciplines for applications in electric circuit and factory layout planning and design. We 193 
identified 49 different methods with geometric architectural outputs of which 14 are bottom-up, 27 are 194 
top-down, and 8 are referential. Methods with architectural intent that did not result in a floorplan 195 
layout (e.g. only studied adjacency graphs in floorplans, or building massings) were excluded.  196 

4.2. Bottom-up Methods 197 

Architectural design briefs often have highly prescriptive spatial requirements. Because of heavily 198 
specified room sizes or adjacency constraints, layout designs often lend themselves well to be generated 199 
via bottom-up design processes. Bottom-up generator methods are therefore conceptually related to 200 
traditional design methods such as mind mapping of spatial relationships, bubble diagrams, and physical 201 
modelmaking strategies. When using modular construction logics that make use of prefabricated 202 
systems in concrete or timber [58] bottom-up aggregation logics enable the exploration of different 203 
design variations and part-whole relationships. 204 

In a final structure, a series of predefined building blocks are aggregated into a larger assembly. As 205 
computational methods for the design of floorplans and building layouts, these aggregations can either 206 
be static (with predetermined architectural spaces) or adaptive (changing during computation) and can 207 
be coupled with heuristics to achieve a desired global outcome. Transformations during the aggregation 208 
process occur on the individual parts themselves. 209 

During the bottom-up aggregation process, additional layers of information can be superimposed on the 210 
digital model to either change, swap out existing units or guide further aggregations. These heuristic 211 
methods can include analytic metrics such as spatial relationships (proximity requirements), 212 
environmental performance (daylight access, energy usage), structural efficiency metrics, or geometric 213 
details (proportions). A schematic of a bottom-up automatic design process for a series of rooms is 214 
described in Figure 4. Table 2 compares different approaches and implementations of bottom-up 215 
methods. 216 
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 217 

Figure 4: Schematic of bottom-up automatic space layout design methods. Starting with a definition of members and objectives, 218 
an initial aggregation and adjustment transforms the individual parts themselves. An objective function evaluates the outcome 219 

and drives local and global parameters to adjust the outcome. 220 

Table 2: Comparison of bottom-up automatic space layout creation methods in literature. Genetic Algorithms (GA), 221 
Mathematical programming (MP) 222 

Typology Scale Objective Function Optimizer Inputs Output Speed Architec
tural 
Quality 

Citation 

N/A (S) 
Single 
floor 

Minimal wall length GA Number and 
areas of rooms 

Floorplan, based 
on grid  

N/A Low [59] 

Residential (S) 
Single 
floor 

Maximize cross 
ventilation, (perimeter 
to area ratio) and 
minimize weighted 
sum of distances 
(closeness of rooms) 

GA Tree 
representation of 
program 

Floorplan, 
differentiated 
rooms 
connected 

N/A Low [60] 
 

Public (S) 
Single 
floor 

Alignment, adjacency, 
orientation, proportion 
(of single rooms) 

Physically 
Based 

Area, adjacency Modeling 
architectural 
design 
objectives in 
physically based 
space planning   

N/A Low [61] 

Residential (S) 
Single 
floor 

Minimize gap space.  Evolutionary 
algorithm 

Area, location 
preference 

Assigned 
program on 
existing layout, 
differentiated 
boundaries 

N/A Low [62] 

Residential (M) 
Multiple 
floors 

Connectivity,  
adjacency, envelope 
containment, 
convexity 

1.Baysian 
network for 
Program 
generation, 2. 
Metropolis 
algorithm  

Area, foootprint, 
aspect ratio, 
adjacency, 
adjacency type 

Program layout ~ Seconds 
to 7 min 

High [63] 

Residential, 
Office 

(M) 
Multiple 
floors 

Shading of 
neighboring building, 
occupied area, 
courtyard size 

Quadratic 
programming, 
simulated 
annealing 

Boundary, total 
floor area, # 
courtyards 

Massing with 
specified floor 
area 

~16 min  Medium [64] 

Office (M) 
Multiple 
floors 

Spatial configuration: 
semi-automatic 
methods for layout 
generation in practice 

Physically 
Based 

Area, adjacency Program layout N/A Med [50] 

Residential (M) 
Multiple 
floors 

Daylight, predicted 
mean vote, shading 

Simulated 
annealing 

Programmatic 
units 

Aggregation of 
modular 
programmatic 
units 

4 min Low [65] 

Residential (M) 
Multiple 
floors 

Maximize area in 
boundary, proximity 
and connectivity of 
program  

Rectangular 
Voronoi 
Subdivision, 
Genetic 
Algorithm 

Area, weighted 
adjacency matrix 

Volumetric 
Arrangement of 
layout 

12 min  Low [66] 

Residential (S) 
Single 
floor 

Adjacency, size MP 600x400pixel 
raster image or 
vector graphic, 
area, adjacency 

Layout on input 
image or vector 
graphic. 

1.3-45.6 s  Medium [67] 
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Residential  (S) 
Single 
floor 

Connecting different 
room graphs to whole 
buildings 

N/A Programm 
graphs, layouts 

Aggregation of 
multiple layouts 

N/A Medium [68] 

Residential (M) 
Multiple 
floors 

topology, room 
dimension and aspect 
ratio, building shape 

Agent based  Program graph, 
area of rooms 

Generated 
layout assigned 
to Grid voxel 

~ Seconds Low [69] 

Residential (S) 
Single 
floor 

Compactness, site 
boundaries, topology, 
user rating, 
circulation, privacy 

GA Areas, 
adjacency, 
window door or 
entrance 
requirement.  

Program layout 6s – 7.3 h  Medium [70] 

Residential (S) 
Single 
floor 

None - Exploratory Graph theory Dimensional 
constraints, 
adjacency 

Program layout ~ 1.5-2min Medium  [71] 

 223 

Bottom-up processes for exploratory and speculative design have been embraced by the design 224 
community to create discrete building systems that reintegrate design thinking with computational 225 
methods of design and means of production [72]. Applied to a building scale, they are particularly useful 226 
when designing for specific typologies that allow for modular construction and design logics in their 227 
realization. Members of a structure, the so-called discrete parts, can be aggregated to respond to 228 
specific architectural and spatial constraints or construction requirements, creating opportunities for 229 
robotic fabrication and reconfigurable structures [73].  230 

As a response to the large search spaces of bottom up design processes, the Model Synthesis algorithm 231 
creates a set of custom constraints that guide the aggregation of user defined modules into complex 3D 232 
shapes [74]. Taking the adjacencies of parts of an existing 3D shape as an input, the method can 233 
generate new variations of larger dimensions that satisfy the original constraints. The method, also 234 
referred to as Wave Function Collapse (WFC), has since gained traction for creating 2D textures (using 235 
two dimensional pixel adjacencies) and 3D models for procedural level creation in computer games 236 
[75,76] as well as for modular design in the architectural domain [77]. To further guide the search 237 
towards solutions with controlled spatial qualities, machine learning (ML) guided heuristics have been 238 
proposed [78]. 239 

Methods of aggregation with large geometric freedom often create large search spaces that need clever 240 
heuristics to guide the exploration and output of good results. Additionally, stochastic methods do not 241 
necessarily find a solution, based on the problem settings. Furthermore, the bottom-up methods make 242 
it difficult to embed and control layers of hierarchy that are prevalent in architectural design such as 243 
different levels of circulation or structural load transfer that require differentiated building components 244 
or adjustments.  245 

4.3. Top-Down Methods 246 

Real-world architectural design is often highly constrained by predefined building massing that stems 247 
from urban scale considerations, building code, or regulations. This can result in highly prescriptive 248 
volumes that define the boundaries of a building that architects want to be fully occupied. When 249 
designing a building with such strong constraints on the envelope, defined through contextual 250 
requirements, site boundaries, or the reorganization of an existing structure, top-down design methods 251 
can be of interest. Methods for subdivision, fitting, shape packing, and iterative agent based methods 252 
have been applied across architectural scales to automate design problems (Figure 5), ranging from the 253 
material scale with optimal placements and dimensioning of shell components [79] to the layout and 254 
partitioning of geographical district scale [80].  255 
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 256 

Figure 5: Schematic of top-down automatic space layout creation methods. Starting with a definition of boundary conditions, 257 
members and objective functions, an initial subdivision is evaluated by the objective function. Adjustment of the subdivision 258 

parameters results in a final structure. 259 

Two promising technological inspirations and very active areas of research originate from the VSLI 260 
layout design and the Facility Layout Problem (FLP). Working with hierarchical systems that have 261 
interconnected rectangular modules, while integrating material constraints [81], the automation of VSLI 262 
circuits design has parallels to spatial layouts. As an optimization problem from the engineering 263 
community for arranging program in a given floor space, FLP is applied when machines in a factory hall 264 
for have to be laid out for a production line [82]. There has been significant interest in trying to transfer 265 
FLP methods to the architectural domain to optimize the placement of room layouts. However, current 266 
methods for solving FLP problems make use of highly abstracted mathematical models that are difficult 267 
to be transferred to real-world architectural environments and their implementation in available 268 
software tools on the market has been limited [83].  269 

Top-down methods take a massing or boundary as an input, as well as a series of entities as fillers or 270 
targets for insertion. The input design is subdivided based on geometric constraints to assign spaces. 271 
Compared to the bottom-up method, the transformations are done on the global boundary conditions 272 
directly, resulting in a solution that will always conform to the initial boundary condition. An overview of 273 
different top-down methods is given in Table 3. 274 

Heuristics can be used to assess the current state of subdivision and can inform next steps in the case of 275 
iterative optimization processes. This can be computed using mathematical programming, such as Mixed 276 
Integer Linear Programming [84], Squarified Treemap algorithms [85] or more geometry based 277 
approaches [22,86]. 278 

The top-down methods work best when used with fixed boundary constraints. Applied to building 279 
design in urban environments, the massing of a building is often predetermined (or highly constrained) 280 
by local building codes. In a first step, top-down approaches can be used to evaluate whether a certain 281 
boundary condition or building massing can be filled with a desired program or functional unit. To 282 
implement hierarchies, recursive subdivision methods that iterate over the resulting subspaces or 283 
programmatic clusters. Working on the end of a hierarchical system, the top-down methods are only 284 
able to cover a small, previously defined design space; in architectural practice that would mean that 285 
stand alone they are less useful for exploratory design stages where the boundary conditions (e.g. 286 
building massing) are not yet defined. 287 
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Table 3: Comparison of top-down automatic design methods in literature. Abbreviations: Genetic Algorithms (GA). 288 
Mathematical programming (MP) 289 

Typology Scale Objective 
Function 

Optimizer Inputs Output Speed Architectural 
Quality 

Citation 

Office (S) Single 
floor 

Adjacency, 
minimize 
travel 
distance  

Quadratic 
assignment 

Areas, adjacency Assigned program on 
existing layout 

High Very Low [87] 

Office (M) Multiple 
floors 

Adjacency GA Areas, adjacency Assigned program on 
existing layout 

High Very Low [88] 

Office (M) Multiple 
floors 

Adjacency GA Areas, adjacency Assigned program on 
existing layout 

High Very Low [89] 

Office (M) Multiple 
floors 

Adjacency GA Areas, adjacency Assigned program on 
existing layout 

High Very Low [90] 

Hospital (M) Multiple 
floors 

Adjacency GA Areas, adjacency Assigned program on 
existing layout 

N/A Low [91] 
 

Residential (S) Single 
floor 

Adjacency, 
room size 

MP  Adjacency, area, 
min width/depth,  

Assigned program on 
existing layout 

N/A Medium [92] 

Residential (S) Single 
floor 

Adjacency, 
room size 

GA, MP Areas, adjacency Design topology (with 
adjacencies) (tree) and 
assigned program on 
existing layout 

N/A Medium [93] 

Residential (S) Single 
floor 

Adjacency, 
heating cost, 
lighting cost, 
spatial 
efficiency 

GA Program 
description (with 
min and max size), 
bounding box 

Layout in bounding box 188 s  Medium [94] 

Residential (S) Single 
floor 

Custom 
fitness  

GA Areas, adjacency, 
proportions, 
building perimeter 

Assigned program on 
existing layout (multiples 
of square foot units) 

600s 
 

Low [95] 
 

Residential (M) Multiple 
floors 

Adjacency Stochastic 
Search 

Adjacency,  
perimeter 

Assigned program on 
existing layout 

N/A Low [96] 

Residential (M) Multiple 
floors 

Adjacency GA Connectivity, 
area, ratio 
 

Assigned program on 
existing layout 

N/A Low [97] 

Residential (S) Single 
floor 

Practicality, 
originality, 
user input 

GA, NSGA-
II 

Areas Assigned program on 
existing layout 

N/A Low [98] 

Residential (S) Single 
floor 

Aspect Ratio, 
area 

GA Area 
 

Assigned program on 
existing layout 

N/A Low [99] 

Residential (S) Single 
floor 

Areas Squarified 
Treemap 
KD Tree 

Areas, connectivity Assigned program on 
existing layout 

N/A High [85] 

Residential (S) Single 
floor 

Areas, 
connectivity 

GA Connectivity Assigned program on 
existing layout 

N/A Low [100] 

Residential (S) Single 
floor 

Areas, 
connectivity 

GA Connectivity, 
hierarchy 

Assigned program on 
existing layout 

N/A Low [101] 

Residential (M) Multiple 
floors 

Areas, 
Connectivity, 
Material 
constraints 

Non-linear 
least 
squares 

Connectivity, 
Areas, Wall 
fabrication 
specification 

Rooms inside boundary, 
precast concrete walls  

2-3.5 s 
Seconds 

Med [102] 

Residential (S) Single 
floor 

Areas, 
connectivity 

GA Connectivity, 
hierarchy 

Assigned program on 
existing layout 

N/A Low [103] 

Residential (M) Multiple 
floors 

Adjacency, 
thermal 
performance 
 

MP Areas, connectivity Assigned program on 
existing layout 

N/A High [104] 
 

Office (M) Multiple 
floors 

Gap spaces MP Room templates Rooms tiles in existing 
grid 

Minutes  
~80s 

Med [105] 

Trade Fair (S) Single 
floor 

Mobility, 
accessibility 
and coziness 
of agent-
based crowd 
simulation 

Stochastic, 
Simulated 
annealing 

Agent behavior Rooms inside boundary 2 - 7 
Minutes 

High [106] 

Office (S) Single 
floor 

Compactness GA Program 
description, ~47 
geometric 
properties 

Room tiles in existing 
grid 

~520s 
Minutes 

Low [107] 
 
 

Hospitals (S) Single 
floor 

Fitted 
program, 
view, travel 

K-D Tree, 
Human 
evaluation 

Program 
description,  

Rooms inside boundary N/A Med [19] 
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distance, 
proportion 

Trade Fair (S) Single 
floor 

Congestion, 
exposure 

GA, NSGA-
II 

Boundary, program 
description 

Program distributed in 
boundary 

5 days  
20s per 
iteration  

Med [108] 
 

Residential, 
office 

(S) Single 
floor 

Gap area MIQP Site boundary, 
program 
description,  

Rooms inside boundary ~15 s 
Seconds 

High [84] 
 

Generic (S) Single 
floor 

Orientation, 
adjacency, 
user selected 
subdivision 
grammar 

Optimizer ( 
N/A) +  
Reinforce-
ment 
learning 

Site boundary, 
program 
description 

Rooms inside boundary N/A High [109] 

Generic (S) Single 
floor  

Visibility, Tree 
Depth, 
Entropy 

Covariance 
Matrix 
Adaptation 

Parametrized 
geometric model 

Optimized wall layout 2.25 -
7.41 s  
Seconds 

Med [110] 

 290 

  291 
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4.4. Referential Methods 292 

Learning from precedent has a rich tradition in architectural education and practice. Distributing design 293 
culture through “peer reviewed” publications of magazines and monographs (a publication describing 294 
the body of work of a single architect or architecture office) or through historical or topic specific 295 
anthologies and catalogues has analogies to the scientific community. Standardized reference works 296 
outlining basic architectural design strategies [111–114] are used for teaching the design of building 297 
layouts. In both professional and educational settings, they are used as reference books for 298 
dimensioning of standardized building elements, such as stairwells, circulation, escalators, or bathroom 299 
layouts.  300 

With technological advances in computation and ML, there has been a renewed interest in referential 301 
automatic layout methods. A high-level overview of the referential method is given in Figure 6 and a 302 
comparison of different methods in literature in Table 4.  303 

 304 

Figure 6: Schematic of referential automatic space layout creation methods. Starting with a dataset (catalogue) of existing 305 
structures. A desired property is extracted from the dataset and a model prepared and trained as Neural Net, TSP or referential 306 
data cluster. The model is applied to a user specified problem formulation and postprocessed into geometric data resulting in a 307 

final structure.  308 

  309 
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Table 4: Comparison of referential automatic layout design methods 310 

Typology Scale Database Reference 
Source 

Matching Inputs Output 
(D) Direct 
(P) Post Processed 

Speed Architectural 
Quality 

Citation 

Residential (S) 
Single 
Floor 

101 single 
story houses 
[115] 

256 × 256 pixel 
image, Color 
Coded 

pix2pix NN via 
RunwayML 

Boundary Rooms color coded in 
boundary (D), 
manual tracing for 
vectors (P) 

N/A Low [116] 

Residential (S) 
Single 
Floor 

RPLAN [117] 256 × 256 pixel 
image, Color 
Coded 

1. CNN for location 
of program 2. CNN 
for placement of 
walls 

Entrance, 
apartment 
boundary 

Wall map (D), vector 
representation of 
layout (P) 

4 s (Seconds) 
(Generation) 
7 Days (ML 
Training) 

Medium [117]  
 

Commercial 
Residential 
Industrial 

(S) 
Single 
Floor 

700 annotated 
plans (Boston, 
USA, collected 
by author) 

? x ? px Image, 
color coded 

pix2pix NN Boundary of 
building 

Rooms color coded in 
boundary (D), 
manual tracing for 
vectors (P) 

N/A Low [118] 

Residential (S) 
Single 
Floor 

500 floorplans, 
undisclosed 

Program graph Bayesian model, 
scored adjacency 
graph 

Apartment 
type 

Program graph N/A (No architectural 
representation) 

[119] 

Residential (S) 
Single 
Floor 

RPLAN [117] 128 x 128 pixel 
image, color 
coded 

1. GNN, CNN 
program 
distribution, 2. CNN 
floorplan image 

Entrance, 
Apartment 
Boundary, 
Number/Ty
pe of rooms 

128 × 128 floorplan 
image (D), vectorized 
floorplan (P) 

0.4s  (Seconds) 
(Generation) 

Medium [120] 

Residential (S) 
Single 
Floor 

117,587 
Layouts from 
Lifull [121] 

256 x 256 pixel 
image, program 
graph 

Conv-MPN Bubble 
diagram, 
(Program 
graph) 

Room masks (D), fitted 
rectangles as rooms 
(P)    

N/A Medium [122] 
 

Office (M) 
Multiple 
Floors 

120,000 
volumetric 
designs (by 
authors) 

Voxel graph, 
program graph 

1. GNNs for the 
pro- gram graph     
2. GNN voxel 
graph, 

Program 
Graph, User 
input during 
generation. 

Volumetric pixel grid 
representation of 
program 

N/A (Generation) 
20 minutes (with 
user interaction) 

Low [123] 

Residential (S) 
Single 
Floor 

RPLAN [117] RPlan images 
parsed as 
program graph 

1. Relational GAN, 
2. Conv-MPN  

Program 
graph  

Vector representation 
of layout 

<0.4s ~Realtime 
(Generation) 

High [124] 

 311 

Several algorithmic methods for referential design have been used, the most prominent are ML-312 
algorithms with deep neural networks such as generative adversarial networks (GANs), as well as 313 
mathematical programming methods to find closest matches.  314 

A series of databases have been ported to be used for generative or transfer purposes and converted to 315 
annotated images or graph structures. For the creation of functional relationships between programs 316 
[63] 120 commercial real estate plans for single family houses were encoded as graphs [125].  A 317 
Japanese real-estate image databases from the with 5.3 Million images [121] was ported for the use 318 
with ML algorithms [122]. To more effectively train neural networks, a series of residential floorplan 319 
datasets were manually collected and annotated by researchers resulting in RPLAN with 80,000 320 
floorplans [117], Rent 3D with 215 floorplans [126] and  CubiCasa5K with 5,000 floorplans from Finnish 321 
real-estate marketing material [127]. In industry, floorplan databases enable algorithmic lookup and 322 
reuse of floorplan drawings from previous work in the development of new layouts [41,52]. 323 

The combination of large image libraries of floorplans with GANs enabled the creation of programmatic 324 
infills into arbitrary floorplan shapes for apartment layouts [116] and allowed for the transfer of 325 
different historical architectural styles to apartment floorplans [118]. Recognizing the importance of 326 
hierarchies, strategies such as sequential infills (starting with the living room as high importance) [84] or 327 
additional graph networks that inform the generation [120] or training data [122,124] highly improve 328 
the plausibility of generated floorplans. Featuring online web interfaces, users can manipulate 329 
programmatic graphs while seeing a corresponding architectural layout in real time [120,123,124]. 330 
However, an emphasis is laid on connectivity of rooms and their sizes or boundary conditions could not 331 
be influenced.  332 

The image-based machine learning methods, however, only work on very constrained boundaries and 333 
small scales, as all information has to be encoded in a 256x256 pixel image. Even though they can be 334 
very accurate inside of a specific domain and create diverse solutions, because of scale limitations, they 335 
have only been applied to single story residential apartment layouts so far. Furthermore, the fuzzy 336 
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outputs of image-based ML algorithms require significant postprocessing to recreate usable geometries, 337 
while using significant computational power and greatly varying in speed.   338 

The strong dependence of the qualities of the outputs on good datasets, makes the lack of involvement 339 
of a diverse representation of the design community highly problematic. The large-scale datasets used 340 
so far in research are based on availability and have not been peer-reviewed or curated appropriately 341 
for architectural, spatial, or cultural qualities or environmental impact, creating unpredictable outputs.  342 

 343 

5. Discussion 344 

The previous sections summarize the substantial effort that has already gone into automated space 345 
layout generation with existing methods borrowing heavily from advanced computational design and 346 
machine learning approaches. It seems obvious that the real estate sector would embrace methods that 347 
can provide vital statistics on the marketability of a given massing, such as the number of housing units 348 
that can fit or the ratio of rentable to circulation areas. Given that an automated floorplan algorithm 349 
combined with a structural sizing tool can deliver a set of drawings that can, in principle, go through 350 
permitting and be constructed, it seems equally intuitive that many architects eye such methods with 351 
suspicion. The level of detail that such methods provide can create an impression of finality that one 352 
traditionally only encounters during later design stages. There is perceived real risk that architects 353 
further lose control of the design process at a time when only 2% of US homes are designed by licensed 354 
architects. Will that number fall even lower?  355 

We find such thinking somewhat defensive. Rather than hanging on to the last 2%, should the 356 
profession not focus on the lost 98% by creating the best possible design in the most efficient manner? 357 
How can the disciplinary knowledge inform design automation to provide better quality and more 358 
resource efficient spaces and housing?  359 

As generative methods can produce an infinite range of different solutions a variety of heuristics are 360 
used to classify promising solutions or guide optimization processes. This creates an opportunity to 361 
include building performance as a driver for design generation, extending the purely geometric 362 
objectives such as adjacencies, position, or aspect ratio. Validated methods for building energy 363 
simulation and natural ventilation with EnergyPlus [128], and daylight simulation using Radiance [129] 364 
have been integrated into layout automation workflows [8,104,130]. Metrics further expanded to 365 
include views [110] and agent based simulated of human behavior for both characterization and 366 
generation of new floorplans [106,131–133].  367 

A big challenge in the creation of coherent layouts is the problem of scale. As programmatic 368 
requirements get more complex it becomes more difficult to coherent layouts that can integrate layers 369 
of hierarchy. This requires either a multi-step approach where programmatic units are clustered 370 
together and subdivided individually [84] or smaller units (such as a single apartment) are created on 371 
their own and then assembled as units into a larger buildings [130]. Hierarchical approaches have also 372 
been successfully implemented to inform ML models, where placing the living room first in the creation 373 
of apartment floorplans increased the quality of solutions [117]. 374 
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To support the creation of new hybrid methods, it is important that spatial, environmental, and 375 
structural considerations can work in parallel and inform one another. We propose to expand the list of 376 
existing metrics to create workflows that can enable floorplan layouts supporting the creation of 377 
sustainable and high performing buildings (Table 5). These metrics can be tested at various scales from 378 
individual room to apartment, floor, or whole buildings for performance testing and optimization.  379 

Table 5: A new set of holistic metrics to guide automated building layouts. 380 

Spatial Environmental Structural 

Modularity 
Minimal change of the floorplan 
necessary to create different 
configurations while retaining same 
overall layout. 

Daylight 
Provide access to daylight throughout 
the building, while minimizing direct 
solar radiation and glare. 

Spans 
Building layouts that work with minimal 
spans to reduce amounts of structural 
materials needed.  

Compactness 
Reduction of circulation to fit more in a 
building, while minimizing unused space. 

Ventilation 
Layouts that promote natural 
ventilation (cross ventilation). 

Continuity 
Layouts that stack loadbearing walls and 
enable optimal placement of shear walls to 
enable continuous carrying of loads. 

Adaptability  
Creating layouts that enable flexibility of 
use by the inhabitants, creating rooms 
that can be used for different functions 
or layouts that enable different uses at 
the same time e.g. through shielding of 
noise.  

Energy 
Minimization of building energy use by 
positioning and layering of less 
conditioned zones such as circulation 
to act as buffers to the conditioned 
spaces.  

Material Integration 
Enable layouts that promote structural 
material systems with low embodied 
carbon and integrate fabrication 
constraints such as prefabricated timber 
modules. 

 381 

In addition to combining traditional floorplan generators with the above-mentioned performance 382 
workflows, we see three specific use cases where automated floorplan methods can enrich the current 383 
design process. 384 

First, for typical urban infills, arguably the most sustainable and urgently needed building typology to 385 
accommodate a growing population, top-down methods provide a natural starting point since many 386 
massing parameters have already been set through zoning and setback requirements as well as clients’ 387 
desire to maximize buildable area. There, a hybrid approach seems very promising, combining both top-388 
down and bottom-up methods to negotiate between programmatic requirements and the urban 389 
context [130,134]. Referential methods be used to augment currently prevalent metrics to evaluate 390 
layout designs, such as daylight access, aspect ratios, or material quantities, verifying the design quality 391 
or offer alternative spatial layouts.  392 

In the case of greenfield developments, bottom-up methods can be useful for quick design exploration 393 
by creating topologically different iterations. Material and construction constraints such as bay sizes, 394 
desired spans or prefabricated small-scale units can be integrated into the members to ensure solutions 395 
are feasible. Varying in resolution, the members of a bottom-up method do not have to be defined as 396 
single rooms but could be larger units or building parts, that can be refined or filled using top-down or 397 
referential approaches.  398 

A third use case relates to building stock analysis. By applying floorplan generator to whole 399 
neighborhood massing models, existing urban analysis methods from daylighting to operational and 400 
embodied energy can be significantly refined since a floorplan help quantify the amount of material in a 401 
building, the likely number of occupants, and the location of internal walls that block daylight.  402 
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6. Conclusions  403 

In this review, we have surveyed existing automatic floorplan layout creation methods in architectural 404 
design and have introduced a categorization into three methodologies. The bottom-up method 405 
proposes to work with a set of parts, such as rooms or preassembled units and to aggregate them into a 406 
larger structure. As an exploratory tool, it allows for the fast generation of different design options. 407 
Aggregation strategies can be further coupled with heuristics to guide the assembly. However, 408 
navigating often complex constraints or boundary conditions can be very challenging in the very large 409 
design space. There, top-down methods can offer an alternative, starting directly from geometric 410 
constraints, such as a building or site boundaries that get subdivided into smaller units. For this, 411 
different subdivision or packing strategies can be deployed. Third, referential methods are being 412 
investigated to make use of existing buildings and datasets. Geometric properties of existing or premade 413 
layouts can be fit or adapted to a new context. Fueled by recent advances in machine learning 414 
algorithms, spatial relationships have been captured as graphs or bitmap images and encoded into 415 
neural networks, enabling lookup and synthesis.  416 

The further accessibility of machine learning algorithms and advancements of computational tools 417 
integrated into traditional geometric modeling environments used in architectural design could help 418 
bridge the interdisciplinary gap for architects to apply more domain specific knowledge. In our survey, 419 
we can show how floorplan layout automation is a dynamic field, both in terms of industry developing 420 
new tools, and business cases, as well as in academic research. We can see different disciplines engaging 421 
with the topic, ranging from architectural design research, civil engineering, building physics and 422 
technology, as well as computer graphics.  423 

Showing the opportunities of hybrid approaches that go beyond purely spatial properties (e.g. 424 
proportions, areas or connectivity) to create believable floorplans, we see potential to further evaluate 425 
layouts based on environmental, and structural constraints that can serve the occupants. We propose 426 
the hybridization of the three methods, coupled with a new set of interdisciplinary metrics and 427 
performance indicators to guide future building layout automation. Working together in an iterative 428 
loop, the strengths of the different strategies can be applied at different points in the design process.  429 

We show how automating building layouts can have a wide range of value propositions. Current use 430 
cases in the real estate industry can be expanded to create design tools that utilize automated floorplan 431 
layouts to give feedback about program, occupancy, or embodied carbon in the early stages of design. 432 
Using algorithmic and data driven solutions, they can optimize building layouts during the design 433 
process or explore creative solutions for new construction. Furthermore, they could lead to developing a 434 
better understanding of existing building stock or changes in building policy: empowering architects, 435 
urban designers, law makers and the public to make more informed decisions towards creating 436 
sustainable cities of the future.  437 
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